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Abstract
The reduction operators, i.e. the operators of nonclassical (conditional)
symmetry, of (1 + 1)-dimensional second-order linear parabolic partial
differential equations and all the possible reductions of these equations
to ordinary differential ones are exhaustively described. This problem
proves to be equivalent, in some sense, to solving initial equations. The
‘no-go’ result is extended to the investigation of point transformations
(admissible transformations, equivalence transformations, Lie symmetries) and
Lie reductions of the determining equations for the nonclassical symmetries.
Transformations linearizing the determining equations are obtained in the
general case and under different additional constraints. A nontrivial example
illustrating applications of reduction operators to finding exact solutions of
equations from the class under consideration is presented. An observed
connection between reduction operators and Darboux transformations is
discussed.

PACS numbers: 02.20.−a, 02.30.Jr
Mathematics Subject Classification: 35A30, 35C05, 35K05, 35K10

1. Introduction

The notion of nonclassical symmetry (also called Q-conditional or, simply, conditional
symmetry) was introduced in [2] by the example of the (1 + 1)-dimensional linear heat
equation and a particular class of operators. A precise and rigorous definition was suggested
later (see, e.g., [8, 9, 44]). In contrast to classical Lie symmetry, the system of determining
equations on the coefficients of conditional symmetry operators of the heat equation was
found to be nonlinear and less overdetermined [2]. First, this system was investigated in [42]
in detail, where it was partially linearized and its Lie symmetries were found. The problem on
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conditional symmetries of the heat equation was completely solved in [7], see also [6]. Namely,
the determining equations were obtained in both the cases arising under consideration and then
studied from the Lie symmetry point of view and reduced to the initial equation with nonlocal
transformations. The maximal Lie invariance algebras of both the sets of the determining
equations appeared isomorphic to the maximal Lie invariance algebra of the initial equation.
(Later few of these results were re-obtained in [15].) The results of [7] were extended in
[5, 22, 23] to a class of linear transfer equations which generalize the heat equation. Thus, for
these equations the ‘no-go’ theorems on linearization of determining equations for coefficients
of conditional symmetry operators to the initial equations were proved in detail and wide
multi-parametric families of exact solutions were constructed with non-Lie reductions. It was
observed in [43] that the proof of the theorem from [7] on reducibility of determining equations
to initial ones in the case of conditional symmetry operators with vanishing coefficients of ∂t

is extended to the class of (1 + 1)-dimensional evolution equations. This theorem was also
generalized to multi-dimensional evolution equations [24] and even systems of such equations
[40].

The conditional invariance of a differential equation with respect to an involutive family of
l vector fields is equivalent to that any Ansatz associated with this family reduces the equation
to a differential equation with the lesser by l number of independent variables [44]. That
is why, we use the shorter and more natural term ‘reduction operators’ instead of ‘operators
of conditional symmetry’ or ‘operators of nonclassical symmetry’ and say that a family of
operators reduces a differential equation in case the equation is reduced by the associated
Ansatz.

In this paper, we investigate the reduction operators of the second-order linear parabolic
partial differential equations in two independent variables, which have the general form

Lu = ut − A(t, x)uxx − B(t, x)ux − C(t, x)u = 0, (1)

where the coefficients A,B and C are (real) analytic functions of t and x,A �= 0. These
coefficients form the entire tuple of arbitrary elements of class (1). We justify the partition of
the sets of reduction operators into two subsets depending on vanishing or nonvanishing of the
coefficients of ∂t . Usually this point is missed in the literature on conditional symmetries. After
factorization by the equivalence relation between reduction operators, we find the determining
equations for the coefficients of operators from both the subsets. All the possible reductions of
equations from class (1) to ordinary differential equations are described. Different kinds
of ‘no-go’ statements on the reduction of study (including solution) of the determining
equations to the corresponding initial ones are obtained for equations from class (1). In
particular, the point transformations of all kinds in both the classes of determining equations
(admissible transformations, transformations from the associated equivalence groups, Lie
symmetry transformations) are induced by the corresponding point transformations in
class (1). Lie solutions of the determining equations first prove to admit nontrivial
interpretations in terms of Lie invariance properties of the initial equations. An example
on the application of reduction operators is presented. It shows that in spite of the ‘no-go’
statements nonclassical symmetry is an effective tool for finding exact solutions of partial
differential equations.

There are a number of motivations inducing us to carry out the above investigations.
Class (1) contains important subclasses that are widely applied in different science (probability
theory, physics, financial mathematics, biology, etc). The most famous examples are
the Kolmogorov equations (C = 0) and adjoint to them the Fokker–Planck equations
(Axx − Bx + C = 0) which form a basis for analytical methods in the investigation of
continuous-time continuous-state Markov processes. (The other names are Kolmogorov

2



J. Phys. A: Math. Theor. 41 (2008) 185202 R O Popovych

backward and Kolmogorov forward equations, respectively.) The first use of the Fokker–
Planck equation was the statistical description of Brownian motion of a particle in a fluid.
Fokker–Planck equations with different coefficients also describe the evolution of one-particle
distribution functions of a dilute gas with long-range collisions, problems of diffusion in
colloids, population genetics, stock markets, quantum chaos, etc. Due to their importance
and relative simplicity, equations from class (1) are conventional objects for studies in the
framework of group analysis of differential equations. Lie symmetries of these equations
were classified by Lie [14]. The (1 + 1)-dimensional linear heat equation is often used as an
illustrative example in textbooks on the subject [17] and a benchmark example for computer
programs calculating symmetries of differential equations [11]. It is the equation that is
connected with the invention of nonclassical symmetries [2]. First, discussions on weak
symmetries also involved the linear heat equation and a Fokker–Planck equation [19, 37].
At the same time, all previous studies of nonclassical symmetries of equations (1) were not
systematic. Only a few equations and single properties were considered.

The results of [5, 7, 22, 27] are extended in the present paper mainly in two directions.
First, the entire class (1) is regularly investigated with the nonclassical symmetry point of
view and, second, non-evident properties of point transformations and Lie reductions of the
determining equations are found via involving admissible transformations in the framework
of nonclassical symmetries.

Our paper is organized as follows. Necessary notions and statements on nonclassical
symmetries are presented in section 2. The notion of equivalence of nonclassical symmetries
with respect to a transformation group or a set of admissible transformations plays a crucial
role in our consideration and therefore is separately given in section 3. Section 4 is devoted to
reviewing the known results on admissible transformations, point symmetries and equivalences
in class (1), including discrete ones. The presentation of these results is important since they
form a basis for the application of our technique involving transformations between equations
and are extended in the paper to both the classes of determining equations. Moreover, Lie
symmetry operators are special cases of reduction operators. The determining equations
are derived in section 5 for both the cases of nonvanishing and vanishing coefficients of
∂t . It is proved in section 6 via description of all possible reductions that solving the
determining equations is equivalent to the construction of parametric families of solution
of the corresponding initial equations. As a result, nonlocal transformations reducing the
determining equations to the initial ones are found. Point transformations and Lie reductions
of the determining equations are studied in sections 7 and 8, respectively. The results on
Lie reductions of the determining equations corresponding to reduction operators with zero
coefficients of ∂t are presented in such a form that they are directly extended to the general
class of (1 + 1)-dimensional evolution equations. In section 9 we investigate the determining
equations along with some non-Lie additional constraints. A nontrivial application of reduction
operators to finding exact solutions of equations from class (1), arising under Lie reductions of
the Navier–Stokes equations, is presented in section 10. In the last section we discuss possible
extensions of obtained results, in particular, via study of the observed connection between
reduction operators and the Darboux transformations of equations from class (1).

To check the results on Lie invariance of differential equations appearing in the paper, we
used the unique program LIE by Head [11].

2. Reduction operators of differential equations

Following [8, 9, 35, 44], in this section we shortly adduced necessary notions and results
on nonclassical (conditional) symmetries of differential equations. After substantiating with
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different arguments, we use the name ‘families of reduction operators’ instead of ‘involutive
families of nonclassical (conditional) symmetry operators’.

Consider an involutive family Q = {Q1, . . . ,Ql} of l (l � n) first-order differential
operators

Qs = ξ si(x, u)∂i + ηs(x, u)∂u, s = 1, . . . , l

in the space of the variables x and u, satisfying the condition rank ‖ξ si(x, u)‖ = l.
Hereafter, x denote the n-tuple of independent variables (x1, . . . , xn) and u is treated as

the unknown function. The index i runs from 1 to n, the indices s and σ run from 1 to l, and
we use the summation convention for repeated indices; ∂i = ∂/∂xi, ∂u = ∂/∂u. Subscripts
of functions denote differentiation with respect to the corresponding variables. The local
consideration is assumed.

The requirement of involution for the family Q means that the commutator of any pair of
operators from Q belongs to the span of Q over the ring of smooth functions of the variables
x and u, i.e.,

∀ s, s ′ ∃ ζ ss ′σ = ζ ss ′σ (x, u): [Qs,Qs ′
] = ζ ss ′σQσ .

The set of such families will be denoted by Ql .
If the operators Q1, . . . ,Ql form an involutive family Q, then the family Q̃ of differential

operators

Q̃s = λsσ Qσ , where λsσ = λsσ (x, u), det‖λsσ‖ �= 0

is also involutive and is called equivalent to the family Q. This will be denoted by
Q̃ = {Q̃s} ∼ Q = {Qs}. (In the case l = 1 the functional matrix (λsσ ) becomes a
single nonvanishing multiplier λ = λ(x, u).) Denote also the result of factorization of Ql

with respect to this equivalence relation by Ql
f . Elements of Ql

f will be identified with their
representatives in Ql .

If a family consists of a single operator (l = 1), the involution condition degenerates to
an identity. Therefore, in this case we can omit the words ‘involutive family’ and talk only
about operators. Thus, two differential operators are equivalent if they differ on a multiplier
being a non-vanishing function of x and u.

The first-order differential function Qs[u] := ηs(x, u) − ξ si(x, u)ui is called the
characteristic of the operator Qs . In view of the Frobenius theorem, the above involution
condition is equivalent to that the characteristic system Q[u] = 0 of PDEs Qs[u] = 0
(also called the invariant surface condition) has n + 1 − l functionally independent integrals
ω0(x, u), . . . , ωn−l (x, u). Therefore, the general solution of this system can be implicitly
presented in the form F(ω0, . . . , ωn−l ) = 0, where F is an arbitrary function of its arguments.

The characteristic systems of equivalent families of operators have the same set of
solutions. And vice versa, any family of n + 1 − l functionally independent functions of
x and u is a complete set of integrals of the characteristic system of an involutive family of l
differential operators. Therefore, there exists the one-to-one correspondence between Ql

f
and the set of families of n + 1 − l functionally independent functions of x and u, which is
factorized with respect to the corresponding equivalence. (Two families of the same number
of functionally independent functions of the same arguments are considered equivalent if any
function from one of the families is functionally dependent on functions from the other family.)

A function u = f (x) is called invariant with respect to the involutive operator family Q
(or, briefly, Q-invariant) if it is a solution of the characteristic system Q[u] = 0. This notion
is justified by the following facts. Any involutive family of l operators is equivalent to a basis
Q̃ = {Q̃s} of an l-dimensional (Abelian) Lie algebra g of vector fields in the space (x, u).
Each solution u = f (x) of the associated characteristic system satisfies the characteristic
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system Q̃[u] = 0. Therefore, the graph of the function u = f (x) is invariant with respect to
the l-parametric local transformation group generated by the algebra g.

Since rank ‖ξ si(x, u)‖ = l, we can assume without loss of generality that ω0
u �= 0 and

Fω0 �= 0 and resolve the equation F = 0 with respect to ω0: ω0 = ϕ(ω1, . . . , ωn−l ). This
representation of the function u is called an Ansatz corresponding to the family Q.

Consider an rth-order differential equation L of the form L(x, u(r)) = 0 for the unknown
function u of n independent variables x = (x1, . . . , xn). Here, u(r) denotes the set of all the
derivatives of the function u with respect to x of order not greater than r, including u as the
derivative of the zero order. Within the local approach the equation L is treated as an algebraic
equation in the jet space J (r) of the order r and is identified with the manifold of its solutions
in J (r). Denote this manifold by the same symbol L and the manifold defined by the set of all
the differential consequences of the characteristic system Q[u] = 0 in J (r) by Q(r), i.e.,

Q(r) = {
(x, u(r)) ∈ J (r)

∣∣Dα1
1 . . . Dαn

n Qs[u] = 0, αi ∈ N ∪ {0}, |α|: = α1 + · · · + αn < r
}
,

where Di = ∂xi
+ uα+δi

∂uα
is the operator of total differentiation with respect to the variable

xi, α = (α1, . . . , αn) is an arbitrary multi-index, δi is the multi-index whose ith entry equals
1 and whose other entries are zero. The variable uα of the jet space J (r) corresponds to the
derivative ∂ |α|u

/
∂x

α1
1 . . . ∂xαn

n .

Definition 1. The differential equation L is called conditionally invariant with respect
to the involutive family Q if the relation Qs

(r)L(x, u(r))
∣∣
L∩Q(r)= 0 holds, which is called

the conditional invariance criterion. Then Q is called an involutive family of conditional
symmetry (or Q-conditional symmetry, nonclassical symmetry, etc) operators of the equation
L. Here the symbol Qs

(r) stands for the standard rth prolongation of the operator Qs [17, 21]:
Qs

(r) = Qs +
∑

|α|�r ηsα∂uα
, where ηsα = D

α1
1 . . . Dαn

n Qs[u] + ξ siuα+δi
.

The equation L is conditionally invariant with respect to the family Q if and only if the
Ansatz constructed with this family reduces L to a differential equation with n− l independent
variables [44]. So, we will also call involutive families of conditional symmetry operators the
families of reduction operators of L. Another treatment of conditional invariance is that the
system L ∩ Q(r) is compatible in the sense of absence of nontrivial differential consequences
[18, 20]. If the infinitesimal invariance condition is not satisfied but nevertheless the equationL
has Q-invariant solutions then Q is called a family of weak symmetry operators of the equation
L [19, 20]. Nonclassical symmetries are often defined as generators of parametric groups of
transformations preserving the solutions of L which additionally satisfy the corresponding
invariant surface condition [12]. It is necessary to precisely interpret all the terms involved in
this definition since otherwise it leads to the conclusion that, roughly speaking, any operator
is a nonclassical symmetry of any partial differential equation. See also [1, 4, 20] for the
discussion of connections between different kinds of symmetries.

Lemma 1 ([9, 44]). If a differential equation is conditionally invariant with respect to an
operator family Q, then it is conditionally invariant with respect to any family of operators,
which is equivalent to Q.

The set of involutive families of l reduction operators of the equationL is a subset ofQl and
so will be denoted by Ql(L). In view of lemma 1, Q ∈ Ql (L) and Q̃ ∼ Q imply Q̃ ∈ Ql (L),
i.e., Ql (L) is closed under the equivalence relation on Ql . Therefore, the factorization of Ql

with respect to this equivalence relation can be naturally restricted on Ql(L) that results in
the subset Ql

f(L) of Ql
f . As in the whole set Ql

f , we identify elements of Ql
f(L) with their

representatives in Ql(L). In this approach, the problem of complete description of families of
l reduction operators for the equation L is nothing but the problem of finding Ql

f(L).
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A different terminology can be used to call elements of Ql
f . Namely, it is possible to

consider each element of Ql
f as a C∞-module of the module dimension l, closed with respect

to commutation [20, 41].
There are families of reduction operators related to classical Lie symmetries. Let g be

an l-dimensional Lie invariance algebra of the equation L, whose basis operators satisfy the
condition rank ‖ξ si‖ = rank ‖ξ si , ηs‖(=l′ � l). The subsets consisting of l′ elements of g,
which are linearly independent over the ring of smooth functions of x and u, belong to Ql′(L)

and are equivalent to each other. The families of similar kind and ones equivalent to them will
be called Lie families of reduction operators. The other families of reduction operators will
be called non-Lie.

3. Equivalence of families of reduction operators with respect to transformation groups

We can essentially simplify and order the investigation of reduction operators, additionally
taking into account Lie symmetry transformations in the case of a single equation [25] and
transformations from the equivalence group or the whole set of admissible transformations
in the case of a class of equations [35]. Then the problem becomes similar to the group
classification of differential equations.

Lemma 2. Any point transformation of x and u induces a one-to-one mapping of Ql into itself.
Namely, the transformation g: x̃ = X(x, u), ũ = U(x, u) generates the mapping gl

∗:Ql → Ql

such that the involutive family Q is mapped to the involutive family gl
∗Q consisting from the

operators g∗Qs = ξ̃ si∂x̃i
+ η̃s∂ũ, where ξ̃ si (x̃, ũ) = QsXi(x, u), η̃s(x̃, ũ) = QsU(x, u). If

Q′ ∼ Q then gl
∗Q

′ ∼ gl
∗Q. Therefore, the corresponding factorized mapping gl

f :Ql
f → Ql

f
also is well defined and one-to-one.

Definition 2 ([25, 33]). Involutive families Q and Q̃ of the same number l of differential
operators are called equivalent with respect to a group G of point transformations (Q ∼
Q̃ mod G) if there exists a transformation g from G for which the families Q and gl

∗Q̃ are
equivalent.

Lemma 3. Given any point transformation g of the equation L to an equation L̃, gl
∗ maps

Ql (L) to Ql(L̃) in a one-to-one manner. The same statement is true for the factorized mapping
gl

f from Ql
f(L) to Ql

f(L̃).

Corollary 1. Let G be a Lie symmetry group of the equation L. Then the equivalence of
involutive families of l differential operators with respect to the group G generates equivalence
relations in Ql (L) and in Ql

f(L).

Consider a class L|S of equations Lθ : L(x, u(r), θ(x, u(r))) = 0 parameterized by θ .
Here, L is a fixed function of x, u(r) and θ. The symbol θ denotes the tuple of arbitrary
(parametric) functions θ(x, u(r)) = (θ1(x, u(r)), . . . , θ

k(x, u(r))) running through the solution
set S of the system S(x, u(r), θ(q)(x, u(r))) = 0. This system consists of differential equations
on θ , where x and u(r) play the role of independent variables and θ(q) stands for the set of all
the partial derivatives of θ of order not greater than q. In what follows we call the functions θ

arbitrary elements. By G∼ we denote the point transformations group preserving the form of
the equations from L|S .

For a fixed value l � n, consider the set P = P(L, S) of all pairs each of which consists
of an equation Lθ from L|S and a family Q from Ql(Lθ ). In view of lemma 3, the action
of transformations from G∼ on L|S and {Ql(Lθ )|θ ∈ S} together with the pure equivalence
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relation of involutive families of l differential operators naturally generates an equivalence
relation on P.

Definition 3. Let θ, θ ′ ∈ S,Q ∈ Ql (Lθ ),Q
′ ∈ Ql (Lθ ′). The pairs (Lθ ,Q) and (Lθ ′ ,Q′) are

called G∼-equivalent if there exists a transformation g ∈ G∼ which maps the equation Lθ to
the equation Lθ ′ , and Q′ ∼ gl

∗Q.

The classification of families of reduction operators with respect to G∼ will be understood
as classification in P with respect to the above equivalence relation. This problem can
be investigated in a way similar to the usual group classification in classes of differential
equations. Namely, we construct first the reduction operators which are defined for all values
of the arbitrary elements. Then we classify, with respect to the equivalence group, the values
of arbitrary elements for which the corresponding equations admit additional families of
reduction operators.

In an analogous way, we can also introduce equivalence relations on P, which are generated
by either generalizations of usual equivalence groups or all admissible point transformations
[30] (also called form-preserving ones [13]) in pairs of equations from L|S .

Note 1. The consideration of the previous and this sections and known examples of studying
reduction operators lead to the empiric conclusion that possessing a wide Lie symmetry group
by a differential equation L complicates, in some way, finding nonclassical symmetries of L.
Indeed, any subalgebra of the corresponding maximal Lie invariance algebra, satisfying the
transversality condition, generates a class of equivalent Lie families of reduction operators.
A non-Lie families of reduction operators existing, the action of symmetry transformations
on it results in a series of non-Lie families of reduction operators, which are inequivalent
in the usual sense. Therefore, for any fixed value of l the system of determining equations
on coefficients of operators from Ql(L) is not sufficiently overdetermined to be completely
integrated in an easy way, even after factorized with respect to the equivalence relation in
Ql (L). To produce essentially different non-Lie reductions, one have to exclude the solutions
of determining equations, which give Lie families of reduction operators and non-Lie families
being equivalent to others with respect to the Lie symmetry group of L. As a result, the ratio
of efficiency of such reductions to expended efforts can be vanishingly small.

4. Lie group analysis of linear second-order parabolic equations

Group classification in class (1) was first performed by Lie [14] as a part of his classification of
general linear second-order PDEs in two independent variables. (See also a modern treatment
of this subject in [21].) We shortly adduce these classical results, extending them for our
purposes with using the notions of admissible transformations and normalized classes of
differential equations. First, normalization properties of different classes of linear second-
order parabolic equations were simultaneously analyzed in [34] in detail.

Roughly speaking, an admissible transformation in a class of systems of differential
equations is a point transformation connecting at least two systems from this class (in the
sense that one system is transformed into the other by the transformation). The equivalence
group of the class is the set of admissible transformations which can be applied to every
system from the class. The class is called normalized if any admissible transformation in
this class belongs to its equivalence group and is called strongly normalized if additionally
the equivalence group is generated by transformations from the point symmetry groups of
systems from the class. The set of admissible transformations of a semi-normalized class
is generated by the transformations from the equivalence group of the whole class and the
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transformations from the point symmetry groups of initial or transformed systems. Strong
semi-normalization is defined in the same way as strong normalization. Any normalized class
is semi-normalized. Two systems from a semi-normalized class are transformed into one
another by a point transformation iff they are equivalent with respect to the equivalence group
of this class. See [26, 28, 30, 32] for precise definitions and statements.

Any point transformation T in the space of variables (t, x, u) has the form t̃ =
T t (t, x, u), x̃ = T x(t, x, u), ũ = T u(t, x, u), where the Jacobian |∂(T t , T x, T u)/∂(t, x, u)|
does not vanish.

Lemma 4. A point transformation T connects two equations from class (1) if and only if
T t

x = T t
u = 0, T x

u = 0, T u
uu = 0, i.e.,

t̃ = T (t), x̃ = X(t, x), ũ = U 1(t, x)u + U 0(t, x), (2)

where T ,X,U 1 and U 0 are arbitrary smooth functions of their arguments such that
TtXxU

1 �= 0 and additionally U 0/U 1 is a solution of the initial equation. The arbitrary
elements are transformed by the formulae

Ã = X2
x

Tt

A, B̃ = Xx

Tt

(
B − 2

U 1
x

U 1
A

)
− Xt − AXxx

Tt

, C̃ = −U 1

Tt

L
1

U 1
. (3)

Here, L = ∂t − A∂xx − B∂x − C is the second-order linear differential operator associated
with the initial (non-tilde) equation.

Corollary 2. Class (1) is strongly semi-normalized. The equivalence group G∼ of class (1) is
formed by the transformations determined in the space of variables and arbitrary elements by
formulae (2), (3), where T ,X and U 1 are arbitrary smooth functions of their arguments such
that TtXxU

1 �= 0 and U 0 = 0 additionally.

Note 2. Due to the presence of the linear superposition principle, class (1) is not normalized
because it is formed by linear homogeneous equations. The minimal normalized superclass
of class (1) is the associated class of inhomogeneous equations of the general form

ut = A(t, x)uxx + B(t, x)ux + C(t, x)u + D(t, x).

Using transformations from G∼, the arbitrary elements A and B can be simultaneously
gauged to 1 and 0, respectively. Hence, any equation from class (1) can be reduced by a
transformation from G∼ to an equation of the general form

ut − uxx + V (t, x)u = 0. (4)

The admissible transformations in subclass (4) are those admissible transformations in
class (1) which preserve the gauges A = 1 and B = 0, i.e., which additionally satisfy
the conditions T t

t = (
T x

x

)2
and 2T x

x T u
xu = −T x

t T u
u .

Corollary 3. A point transformation T connects two equations from class (4) if and only if it
has the form

t̃ =
∫

σ 2 dt, x̃ = σx + ζ, ũ = U 1u + U 0, U 1 := θ exp

(
− σt

4σ
x2 − ζt

2σ
x

)
,

Ṽ = 1

σ 2

(
V +

σσtt − 2σt
2

4σ 2
x2 +

σζtt − 2σtζt

2σ 2
x − θt

θ
− σt

2σ
− ζt

2

4σ 2

)
, (5)

where σ = σ(t), ζ = ζ(t), θ = θ(t) and U 0 = U 0(t, x) are arbitrary smooth functions of
their arguments such that σθ �= 0 and U 0/U 1 is a solution of the initial equation. Class (4)
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is strongly semi-normalized. Any transformation from the equivalence group G∼
r of class (4)

has form (5), where U 0 = 0 additionally.

The narrower equivalence group under preserving certain normalization properties
suggests class (4) as the most convenient one for group classification. Moreover, solving
the group classification problem for class (1) is reduced to solving the group classification
problem for class (4). The results on the group classification of class (1) (resp. (4)) can be
formulated in the form of the following theorem [14, 21].

Theorem 1. The kernel Lie algebra of class (1) (resp. (4)) is 〈u∂u〉. Any equation from
class (1) (resp. (4)) is invariant with respect to the operators f ∂u, where the parameter-function
f = f (t, x) runs through the solution set of this equation. All possible G∼-inequivalent (resp.
G∼

r -inequivalent) cases of extension of the maximal Lie invariance algebra are exhausted by
the following ones (the values of V are given together with the corresponding maximal Lie
invariance algebras):

(1) V = V (x): 〈∂t , u∂u, f ∂u〉;
(2) V = µx−2, µ �= 0: 〈∂t ,D,�, u∂u, f ∂u〉;
(3) V = 0: 〈∂t , ∂x,G,D,�, u∂u, f ∂u〉.
Here, D = 2t∂t + x∂x,� = 4t2∂t + 4tx∂x − (x2 + 2t)u∂u,G = 2t∂x − xu∂u.

Let L be an equation from class (1), g(L) denote its maximal Lie invariance algebra
and g∞(L) be the infinite-dimensional ideal of this algebra, consisting of the operators of the
form f ∂u, where the parameter-function f = f (t, x) runs through the solution set of L. The
quotient algebra g(L)/g∞(L) is identified with the finite-dimensional subalgebra gess(L) of
g(L), spanned by the ‘essential’ Lie invariance operators of L, which do not contain summands
of the form f (t, x)∂u. Each operator from g(L) is similar to an operator from gess(L) under a
trivial linear-superposition transformation t̃ = t, x̃ = x, ũ = u + f (t, x).

Corollary 4. For every equation L from class (1) dim gess(L) ∈ {1, 2, 4, 6}.
It will be shown below that for every equation L from class (1) the number of reduction

operators being inequivalent with respect to the group of linear-superposition transformations,
roughly speaking, is significantly greater that the number of ‘essential’ Lie invariance
operators.

5. Determining equations for reduction operators of linear second-order parabolic
equations

In the case of two independent variables t and x and one dependent variable u, each reduction
operator is written as Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u, where (τ, ξ) �= (0, 0).
The conditional invariance criterion for an equation L from class (1) and the operator Q has
the form [8]

Q(2)Lu
∣∣
Lu=0,Q[u]=0,DtQ[u]=0,DxQ[u]=0 = 0,

where Q(2) is the standard second prolongation of Q,Q[u] = η−τut −ξux is the characteristic
of Q and Dt and Dx denote the total differentiation operators with respect to t and x,
respectively:

Dt = ∂t + ut∂u + utt ∂ut
+ utx∂ux

+ · · · ,
Dx = ∂x + ux∂u + utx∂ut

+ uxx∂ux
+ · · · .

9
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All equalities hold true as algebraic relations in the second-order jet space J (2) over the space
of the independent variables (t, x) and the dependent variable u.

Since L is an evolution equation, there are two principally different cases of finding
its reduction operators: τ �= 0 and τ = 0. The investigation of these cases results in the
preliminary description of the reduction operators.

Lemma 5. Every reduction operator of an equation L from class (1) is equivalent to either
an operator

∂t + g1(t, x)∂x + (g2(t, x)u + g3(t, x))∂u,

where the functions g1 = g1(t, x), g2 = g2(t, x) and g3 = g3(t, x) satisfy the system

g1
t − Ag1

xx − Bg1
x +

(
2g1

x − Ax

A
g1 − At

A

)
(g1 + B) + Bxg

1 + 2Ag2
x + Bt = 0,

g2
t − Ag2

xx − Bg2
x +

(
2g1

x − Ax

A
g1 − At

A

)
(g2 − C) − Cxg

1 − Ct = 0,

g3
t − Ag3

xx − Bg3
x +

(
2g1

x − Ax

A
g1 − At

A

)
g3 − Cg3 = 0,

(6)

or an operator ∂x +η(t, x, u)∂u, where the function η = η(t, x, u) is a solution of the equation

ηt = A(ηxx + 2ηηxu + η2ηuu) + Ax(ηx + ηηu) + (Bη)x + C(η − uηu) + Cxu. (7)

Example 1. Each equation from class (1) with C = 0 possesses the reduction operator ∂x .

We denote the set of reduction operators of the equationL from class (1) byQ(L), omitting
the superscript 1. The corresponding set factorized with respect to the equivalence of reduction
operators is denoted by Qf(L). Consider the subsets Q1(L) and Q0(L) of Q(L), which consist
of the operators constrained by the conditions τ = 1 and (τ, ξ) = (0, 1), respectively. The
factor-set Qf(L) can be identified with Q1(L) ∪ Q0(L). This union represents the canonical
partition of Qf(L). The systems of form (6) and equations of form (7) associated with the
equation L (and being the determining equations for the operators from Q1(L) and Q0(L)) are
denoted by DE1(L) and DE0(L), respectively. It is obvious that the rules L → DE1(L) and
L → DE0(L) define one-to-one mappings of class (1) onto classes (6) and (7).

Note 3. The partition of sets of reduction operators according to the condition of (non-)
vanishing of the coefficient τ is natural for equations from class (1) (as well as the whole class
of evolution equations) and agrees with their transformational properties. See section 7 for
details.

Note 4. For certain reasons, here reduction operators are studied for equations of the non-
reduced form (1). At the same time, it is enough, up to the equivalence relation generated by
the equivalence group of class (1) on the set of pairs ‘(an equation of form (1), its reduction
operator)’, to investigate only subclass (4) of equations with A = 1 and B = 0. The
determining equations (6) and (7) for equations from class (4) have the simpler general form

g1
t − g1

xx + 2g1
xg

1 + 2g2
x = 0,

g2
t − g2

xx + 2g1
x(g

2 + V ) + Vxg
1 + Vt = 0,

g3
t − g3

xx + 2g1
xg

3 + Vg3 = 0

(8)

and

ηt = ηxx + 2ηηxu + η2ηuu − V (η − uηu) − Vxu. (9)

10
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6. Linearization of determining equations to initial ones

There are connections between solution families of an equation L from class (1) and its
reduction operators. This generates connections of the system DE1(L) and the equation
DE0(L) with the initial equation L via nonlocal transformations.

Consider at first reduction operators from Q1(L). Below the indices i and j run from 1
to 3. The indices p and q run from 1 to 2. The summation convention over repeated indices is
used.

Theorem 2. Up to the equivalences of operators and solution families, for any equation
from class (1) there exists a one-to-one correspondence between its reduction operators with
nonzero coefficients of ∂t and two-parametric families of its solutions of the form

u = c1v
1(t, x) + c2v

2(t, x) + v3(t, x), (10)

where c1 and c2 are constant parameters. Namely, each operator of such kind corresponds
to the family of solutions which are invariant with respect to this operator. The problem
of the construction of all two-parametric solution families of equation (1), which are linear
in parameters, is completely equivalent to the problem of the exhaustive description of its
reduction operators with nonzero coefficients of ∂t .

Corollary 5. Nonlinear coupled system (6) is reduced by the transformation

g1 = −A
v1v2

xx − v1
xxv

2

v1v2
x − v1

xv
2

− B, g2 = −A
v1

xv
2
xx − v1

xxv
2
x

v1v2
x − v1

xv
2

+ C,

g3 = A

v1v2
x − v1

xv
2

∣∣∣∣∣∣∣
v1 v1

x v1
xx

v2 v2
x v2

xx

v3 v3
x v3

xx

∣∣∣∣∣∣∣
(11)

to the uncoupled system of three copies of equation (1) for the functions vi = vi(t, x):

Lvi = vi
t − Avi

xx − Bvi
x − Cvi = 0, (12)

and the functions v1 and v2 being linearly independent.

Note 5. Let W(ϕ1, . . . , ϕn) denote the Wronskian of the functions ϕk = ϕk(t, x), k =
1, . . . , n, with respect to the variable x, i.e. W(ϕ1, . . . , ϕn) = det(∂lϕk/∂xl)nk,l=1. Then
transformation (11) can be rewritten as

g1 = −A
(W(v1, v2))x

W(v1, v2)
− B, g2 = −A

W
(
v1

x, v
2
x

)
W(v1, v2)

+ C, g3 = A
W(v1, v2, v3)

W(v1, v2)
.

The solutions ϕk = ϕk(t, x), k = 1, . . . , n, of an equation from class (1) are linearly
independent if and only if W(ϕ1, . . . , ϕn) �= 0. See, e.g., lemma 6 in [31]. Therefore,
formulae (11) are well defined.

Proof. Let L be an equation from class (1) and Q = ∂t + g1∂x + (g2u + g3)∂u ∈ Q1(L),
i.e., the coefficients gi = gi(t, x) satisfy the system DE1(L). An Ansatz associated with
Q has the form u = f 1(t, x)ϕ(ω) + f 0(t, x), where f 1 = f 1(t, x) and f 0 = f 0(t, x)

are given coefficients, f 1 �= 0, ϕ = ϕ(ω) is the new unknown function, ω = ω(t, x) is
the invariant-independent variable and ωx �= 0. This Ansatz reduces L to an (in general,
inhomogeneous) linear second-order ordinary differential equation in ϕ, which we denote by
L′. The general solution of L′ is represented in the form ϕ = cpϕp(ω) + ϕ3(ω), where ϕ3 is
a particular solution of L′, ϕ1 and ϕ2 are linearly independent solutions of the corresponding

11
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homogeneous equation and c1 and c2 are arbitrary constants. Substituting the general solution
of L′ into the Ansatz, we obtain the two-parametric family of solutions of L, having form (10)
with vp = f ϕp and v3 = f ϕ3 + g. The split in the equations Lu = 0 and Q[u] = 0 with
respect to the constants c1 and c2 implies that each of the functions vi is a solution of L and

(g1 + B)vp
x − (g2 − C)vp = −Avp

xx, (g1 + B)v3
x − (g2 − C)v3 − g3 = −Av3

xx.

Since v1v2
x − v1

xv
2 �= 0, the last system is a well-defined linear system of algebraic equations

with respect to (g1, g2, g3), whose solution is represented by (11).
Conversely, suppose that F is a two-parametric family of solutions of L, having form

(10). This means that each of the functions vi is a solution of L. The functions v1 and v2 are
linearly independent since both the parameters c1 and c2 are essential. Consider the operator
Q = ∂t + g1∂x + (g2u + g3)∂u, where the coefficients gi are defined by (11). Q[u] = 0 for any
u ∈ F . The Ansatz u = v1ϕ(ω) + v3, where ω = v2/v1, constructed with Q, reduces L to the
equation ϕωω = 0 since (v2/v1)x = W(v1, v2)/(v1)2 �= 0. Therefore [44], Q ∈ Q1(L) and
the functions gi have to satisfy the system DE1(L). �

Corollary 6. Let L be an equation from class (1) and G∞(L) denote the trivial Lie invariance
group of L, consisting of the linear superposition transformations of the form t̃ = t, x̃ = x

and ũ = u + f (t, x), where the parameter-function f = f (t, x) runs through the solution
set of L. Every reduction operator of the equation L with a nonvanishing coefficient of ∂t is
G∞(L)-equivalent to an operator ∂t + g1∂x + g2u∂u, where the functions g1 = g1(t, x) and
g2 = g2(t, x) satisfy the first two equations of DE1(L).

Proof. Suppose that a reduction operator Q of the equation L has a nonvanishing coefficient
of ∂t . In view of lemma 5, the operator Q is equivalent to an operator Q̂ of the form
∂t + g1∂x + (g2u + g3)∂u, where the functions g1 = g1(t, x), g2 = g2(t, x) and g3 = g3(t, x)

satisfy the system DE1(L). It follows from the proof of theorem 2 that the coefficient g3

possesses the representation g3 = v3
t + g1v3

x − g2v3, where v3 = v3(t, x) is a solution of L.
Then the transformation from G∞(L) with f = −v3 maps the operator Q̂ to the operator
Q̃ = ∂t + g1∂x + (g2ũ + g̃3)∂ũ, where g̃3 = g3 − v3

t − g1v3
x + g2v3 = 0. �

Note 6. The functions vi satisfying the system (12) and the additional conditions (11) with
fixed values of the coefficients gj are defined up to the transformation

ṽp = µpqv
q, ṽ3 = v3 + µ3qv

q, (13)

where µiq = const, and det(µpq) �= 0. Transformation (13) induces the transformation of
the constants c1 and c2: c̃p = µ̃pq(cq − νq), where (µ̃pq) = (µp′q ′)−1. It is obvious that the
families of solutions (10) and u = c̃1ṽ

1 + c̃2ṽ
2 + ṽ3 coincides up to re-parameterization and

can be identified.

Consider reduction operators from Q0(L).

Theorem 3. Up to the equivalences of operators and solution families, for any equation
of form (1) there exists a one-to-one correspondence between one-parametric families of its
solutions and reduction operators with zero coefficients of ∂t . Namely, each operator of such
kind corresponds to the family of solutions which are invariant with respect to this operator.
The problems of the construction of all one-parametric solution families of equation (1) and
the exhaustive description of its reduction operators with zero coefficients of ∂t are completely
equivalent.

12
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Corollary 7. The nonlinear (1 + 2)-dimensional equation (7) is reduced by composition of
the nonlocal substitution η = −�x/�u, where � is a function of (t, x, u), and the hodograph
transformation

the new independent variables: t̃ = t, x̃ = x, � = �,

the new dependent variable: ũ = u (14)

to the initial equation Lũ = 0 in the function ũ = ũ(t̃ , x̃, �) with � playing the role of a
parameter.

Proof. Let L be an equation from class (1) and Q = ∂x + η∂u ∈ Q0(L), i.e., the coefficient
η = η(t, x, u) satisfies the equation DE0(L). An Ansatz associated with Q has the form
u = f (t, x, ϕ(ω)), where f = f 1(t, x, ϕ) is a given function, fϕ �= 0, ϕ = ϕ(ω) is the new
unknown function and ω = t is the invariant-independent variable. This Ansatz reduces L to a
first-order ordinary differential equation in ϕ, which we denote by L′. The general solution of
L′ is represented in the form ϕ = ϕ(ω, �), where ϕ� �= 0 and � is an arbitrary constant. The
substitution of the general solution of L′ into the Ansatz results in the one-parametric family
F of solutions u = f̃ (t, x, �) of L with f̃ = f (t, x, ϕ(t, �)). Expressing the parameter
� from the equality u = f̃ (t, x, �), we obtain that � = �(t, x, u), where �u �= 0. Then
η = ux = −�x/�u for any u ∈ F , i.e., for any admissible values of (t, x, �). This implies
that η = −�x/�u for any admissible values of (t, x, u).

Conversely, suppose that F = {u = f (t, x, �)} is a one-parametric family of solutions
of L. The derivative f� is nonzero since the parameter � is essential. We express � from
the equality u = f (t, x, �): � = �(t, x, u) for some function � = �(t, x, u) with �u �= 0.
Consider the operator Q = ∂x + η∂u, where the coefficient η = η(t, x, u) is defined by the
formula η = −�x/�u. Q[u] = 0 for any u ∈ F . The Ansatz u = f (t, x, ϕ(ω)), where
ω = t , associated with Q, reduces L to the equation ϕω = 0. Therefore [44], Q ∈ Q0(L) and
hence the function η satisfies the equation DE0(L). �

Note 7. One-parametric families of solutions u = f (t, x, �) and u = f̃ (t, x, �̃) of L are
assumed equivalent if they consist of the same solutions and differ only by parameterizations,
i.e., if there exists a function ζ = ζ(�) such that ζ� �= 0 and f̃ (t, x, ζ(�)) = f (t, x, �).
Equivalent one-parametric families of solutions are associated with the same operator from
Q0(L) and have to be identified.

Note 8. The supposed triviality of the above Ansätze and reduced equations is connected
with the usage of the special representations for the solutions of the determining equations.
Under this approach, difficulties in the construction of Ansätze and the integration of reduced
equations are replaced by difficulties in obtaining the representations for coefficients of
reduction operators.

7. Admissible transformations, the equivalence groups and Lie symmetries of
determining equations

The ‘no-go’ results of the previous section can be extended with the investigation of point
transformations, Lie symmetries and Lie reductions of determining equations (6) and (7).
Thus, the maximal Lie invariance algebras of (6) and (7) are isomorphic to the maximal Lie
invariance algebras of equation (1) in a canonical way. (Before this result was known only for
the linear heat equation [7].) Moreover, the similar statements are true for the complete point
symmetry groups including discrete symmetry transformations as well as the equivalence
groups and sets of admissible transformations of classes of the above equations.

13
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All these statements are justified by lemmas 3 and 4. Indeed, each point transformation T
between equations L and L̃ from class (1) has form (2) and induces the one-to-one mappings
T∗:Q(L) → Q(L̃) and Tf :Qf(L) → Qf(L̃). Due to the conditions T t

x = 0 and T t
u = 0,

the transformation T∗ preserves the constraint τ = 0 (resp. τ �= 0) for coefficients of
reduction operators. Therefore, the transformation Tf is split into the one-to-one mappings
Tf,1:Q1(L) → Q1(L̃) and Tf,0:Q0(L) → Q0(L̃) according to the canonical partitions of
Qf(L) and Qf(L̃). This implies that there exist the transformations T1 and T0 in the spaces of
the variables (t, x, g1, g2, g3) and (t, x, u, η), which are induced by the transformation T in a
canonical way. It is evident that

T1(DE1(L)) = DE1(L̃), T0(DE0(L)) = DE0(L̃).

The procedure of deriving the explicit formulae for T1 is the following: acting on the
operator ∂t +g1∂x +(g2u+g3)∂u by T∗ and then normalizing the coefficient of ∂t̃ to 1, we obtain
the operator ∂t̃ + g̃1∂x̃ + (g̃2ũ + g̃3)∂ũ, where the new coefficients g̃i = g̃i(t̃ , x̃), i = 1, 2, 3,
are calculated by the formulae

g̃1 = Xx

Tt

g1 +
Xt

Tt

,

g̃2 = 1

Tt

g2 +
U 1

x

TtU 1
g1 +

U 1
t

TtU 1
, (15)

g̃3 = U 1

Tt

g3 − U 0

Tt

g2 +
U 0

x U 1 − U 0U 1
x

TtU 1
g1 +

U 0
t U 1 − U 0U 1

t

TtU 1
.

Formulae (15) describe the action of T1 on the dependent variables (g1, g2, g3). The
independent variables t and x and the arbitrary elements A,B and C are transformed by
the same formulae (2) and (3) as ones of the transformation T . The transformation of u is
neglected.

If the transformation T belongs to the equivalence group G∼ of class (1) then it is defined
for all values of arbitrary elements. Therefore, the same statement is true for T1, i.e., T1

belongs to the equivalence group G∼
1 of class (6). In other words, the equivalence group of the

initial class induces a subgroup of the equivalence group of the class of determining equations
for the case τ = 1.

Suppose that the transformation T is parameterized by the parameter ε and this family of
transformations form a one-parametric Lie symmetry group of the equation L, generated by
an operator Q = τ∂t + ξ∂x + (ζ 1u + ζ 0)∂u. We differentiate formulae (15) with respect to ε

and then put ε = 0, taking into account the conditions

τ = τ(t) = Tε|ε=0, T |ε=0 = t, ξ = ξ(t, x) = Xε|ε=0, X|ε=0 = x,

ζ 1 = ζ 1(t, x) = U 1
ε

∣∣
ε=0, U 1|ε=0 = 1, ζ 0 = ζ 0(t, x) = U 0

ε

∣∣
ε=0, U 0|ε=0 = 0.

As a result, we obtain the expressions for the coefficients θ i of the Lie symmetry operator
Q1 = τ∂t + ξ∂x + θ i∂gi of the system DE1(L), associated with the operator Q:

θ1 = (ξx − τt )g
1 + ξt ,

θ2 = −τtg
2 + η1

xg
1 + η1

t , (16)

θ3 = (η1 − τt )g
3 − η0g2 + η0

xg
1 + η0

t .

The explicit formulae for T0 are derived in the analogous way. The action of T∗ on the
operator ∂x + η∂u and the normalization of the coefficient of ∂x̃ to 1, result in the operator
∂x̃ + η̃∂ũ, where

η̃ = U 1

Xx

η +
U 1

x

Xx

u +
U 0

x

Xx

. (17)
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Formula (17) represents the expression for the dependent variable η transformed by T0. The
transformations of independent variables t, x and u and the arbitrary elements A,B and C
are given by formulae (2) and (3). The unique difference from the transformation T is that the
variable u is assumed independent. This implies that each transformation from the equivalence
group G∼ of class (1) induces a transformation from the equivalence group G∼

0 of class (7).
Under the infinitesimal approach, each Lie invariance operator Q = τ∂t + ξ∂x + (ζ 1u +

ζ 0)∂u of L is prolonged to the Lie invariance operator Q0 = Q + θ∂η of DE0(L), where the
coefficient θ is determined by the formula

θ = (ζ 1 − ξx)η + ζ 1
x u + ζ 0

x . (18)

The problem is to prove that the induced objects (resp. admissible transformations, point
equivalences, point symmetries and Lie invariance operators) exhaust all possible objects of
the corresponding kinds for determining equations.

Lemma 6. If a point transformation connects two systems DE1(L) and DE1(L̃) from class (6)
then it has the form

t̃ = T (t), x̃ = X(t, x), g̃i = Gii ′(t, x)gi ′ + Gi0(t, x), (19)

where T ,X,G33 and G32 are smooth functions of their arguments such that TtXxG
33 �= 0

and additionally G32/G33 is a solution of the associated equation L; i, i ′ = 1, 2, 3. The other
parameter-functions in (19) are explicitly defined:

G10 = Xt

Tt

, G11 = Xx

Tt

, G12 = 0, G13 = 0,

G20 = (TtG
33)t

Tt
2G33

, G21 = G33
x

TtG33
, G22 = 1

Tt

, G23 = 0,

G30 = (TtG
33)t

Tt
2G33

, G31 = G33
x

G33
G32 − G32

x .

(20)

The arbitrary elements are transformed by the formulae

Ã = X2
x

Tt

A, B̃ = Xx

Tt

(
B − 2

G33
x

G33
A

)
− Xt − AXxx

Tt

, C̃ = −G33L
1

TtG33
. (21)

Here, L = ∂t − A∂xx − B∂x − C is the second-order linear differential operator associated
with the equation L.

Proof. The systems DE1(L) and DE1(L̃) consist of second-order evolution equations which
are linear in the derivatives, and coefficients of second derivatives form the nonsingular
matrices diag(A,A,A) and diag(Ã, Ã, Ã), respectively. In view of corollary 13 of [34] each
transformation between such systems necessarily has form (19). We apply the direct method
with taking into account conditions (19) and find more conditions which can be split by gi

and gi
x . The system of determining equations on parameters of the transformation, obtained

after the split, implies equations (20) and expressions (3) for transformations of the arbitrary
elements. �

Theorem 4. There exists a canonical one-to-one correspondence between the sets of
admissible transformations of classes (1) and (6). Namely, each point transformation between
equations L and L̃ from class (1) induces a point transformation between the associated
systems DE1(L) and DE1(L̃) according to formulae (15). In both the transformations the
independent variables are transformed in the same way. The induced transformations exhaust
the sets of admissible transformation in class (6).
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Proof. It only remains to prove that every admissible transformation in class (6) is induced by
an admissible transformation in class (1) in the above way. We fix two point-equivalent systems
from class (6). They necessarily are systems of determining equations for reduction operators
with the unit coefficients of ∂t for some equations L and L̃ from class (1). Therefore, these
systems can be denoted by DE1(L) and DE1(L̃), respectively. Consider a point transformation
T̆ mapping the system DE1(L) to the system DE1(L̃). In view of lemma 6, the transformation
T̆ has form (19), where G32/G33 is a solution of L and the other parameter-functions Gii ′ and
Gi0 are explicitly expressed by (20). Formulae (21) describe connections between the arbitrary
elements of DE1(L) and DE1(L̃). We associate the transformation T̆ with the transformation
T in the space of the variables (t, x, u), having form (2), where U 1 = TtG

33 and U 0 = TtG
32.

By the construction, U 1/U 0 is a solution of L. Since the pairs (DE1(L), DE1(L̃)) and (L, L̃)

have the same tuples of arbitrary elements, lemma 4 and formulae (21) imply that T is a point
transformation from L to L̃. The comparison of (20) with (15) allows us to conclude that T̆
is induced by T , i.e., T̆ = T1. �

Note 9. It follows from the proof of theorem 4 that ‘if . . . then . . .’ in lemma 6 can be replaced
by ‘. . . if and only if . . .’, i.e., the presented conditions are necessary and sufficient.

Corollary 8. The equivalence group G∼
1 of class (6) is isomorphic to the equivalence group

G∼ of class (1). The canonical isomorphism is established by formulae (15), where U 0 = 0.

Corollary 9. For each equationL from class (1), the maximal point symmetry groups (resp. the
maximal Lie invariance algebras) of the equation L and the system DE1(L) are isomorphic. A
Lie symmetry operator Q = τ∂t + ξ∂x + (ζ 1u + ζ 0)∂u of L induces the Lie symmetry operator
Q1 = τ∂t + ξ∂x +θ i∂gi of the system DE1(L), where the coefficients θ i, i = 1, 2, 3, are defined
by formulae (16).

Corollaries 8 and 9 along with theorem 1 give the group classification of class (6).

Corollary 10. The kernel Lie algebra of class (6) is 〈I1〉, where I1 = g3∂g3 . Any system from
class (6) is invariant with respect to the operators of the form Z1(f ) = (ft + fxg

1 − fg2)∂g3 ,
where the parameter-function f = f (t, x) runs through the solution set of the associated
equation ft = Afxx + Bfx + Cf . All possible G∼

1 -inequivalent cases of extension of the
maximal Lie invariance algebra are exhausted by the following systems of the reduced form (8)
(the values of V are given together with the corresponding maximal Lie invariance algebras):

(1) V = V (x): 〈∂t , I1, Z1(f )〉;
(2) V = µx−2, µ �= 0: 〈∂t ,D1,�1, I1, Z1(f )〉;
(3) V = 0: 〈∂t , ∂x,G1,D1,�1, I1, Z1(f )〉.
Here,

D1 = 2t∂t + x∂x − g1∂g1 − 2g2∂g2 ,

�1 = 4t2∂t + 4tx∂x + 4(x − tg1)∂g1 − (8tg2 + 2xg1 + 2)∂g2 − (x2 + 10t)g3∂g3 ,

G1 = 2t∂x + 2∂g1 − g1∂g2 − xg3∂g3 .

Note 10. It is obvious that corollaries 8, 9 and 10 can be reformulated for subclass (4) of
the initial equations in the reduced form and subclass (8) of the corresponding determining
equations of the first kind (the case τ �= 0).

A specific question for class (6) is what transformations of the functions (v1, v2, v3)

defined in corollary 5 are induced by admissible transformations in class (6). It is clear that
each induced transformation is admissible in class (12). Let L and L̃ be equations from
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class (1). Denote the corresponding systems of form (12) by 3L and 3L̃ and the corresponding
sets of formulae (11) by G and G̃, respectively. It is proved analogously to lemma 6 that any
point transformation connecting the systems 3L and 3L̃ has the form

t̃ = T (t), x̃ = X(t, x), ṽi = U 1(t, x)µij v
j + Ui0(t, x),

where µij = const, det(µij ) �= 0, i, j = 1, 2, 3; T ,X,U 1 and Ui0 are arbitrary smooth
functions of their arguments such that TtXxU

1 �= 0 and additionally Ui0/U 1 are solutions
of the equation L. The arbitrary elements are transformed by formulae (3), where
L = ∂t − A∂xx − B∂x − C is the second-order linear differential operator associated with
the equation L. The agreement of transformations between 3L and 3L̃ with transformations
between DE1(L) and DE1(L̃) via formulae (11) implies the additional conditions

µ13 = µ23 = 0, U 10 = U 20 = 0, µ33 = 1, U 1 = TtG
33, U 30 = TtG

30

for the admissible transformations between the systems 3L ∩ G ∩ DE1(L) and 3L̃ ∩ G̃ ∩
DE1(L̃). To derive these conditions, we express all the tilde variables in G̃ via the non-
tilde ones, then substitute the expressions for gi given by G into G̃ and split with respect
to vj and their derivatives. Combining the obtained result with theorem 4 and omitting the
systems DE1(L) and DE1(L̃) as differential consequences of the systems 3L ∩ G and 3L̃ ∩ G̃,
respectively, we get that the point transformation T of form (2) between the equations L and
L̃ induces the point transformation

t̃ = T (t), x̃ = X(t, x), ṽp = U 1(t, x)µpqv
q, ṽ3 = U 1(t, x)µ3qv

q + U 0(t, x),

where det(µpq) �= 0, p, q = 1, 2, between the system 3L ∩ G and 3L̃ ∩ G̃. The appearance
of the additional constants µiq in the induced transformation is explained by uncertainty (13)
under determining the function vi . The consideration of a one-parametric Lie symmetry group
of the equation L instead of a single transformation between the (possibly different) equations
L and L̃ results in a formula for the extension of Lie symmetry operators of L to Lie symmetry
operators of 3L. Namely, the following statement is true.

Lemma 7. Each Lie symmetry operator Q = τ∂t + ξ∂x + (ζ 1u + ζ 0)∂u of the equation L
generates the family

{τ∂t + ξ∂x + ζ 1vi∂vi + ζ 0∂v3 + λiqv
q∂vi | λiq = const}

of Lie symmetry operators of the associated system 3L with the additional conditions G. Here,
i, j = 1, 2, 3, q = 1, 2. The functions gj satisfy the system DE1(L) being the compatibility
condition of 3L ∩ G.

The chain of similar statements is also obtained for class (7).

Lemma 8. If a point transformation in the space of the variables (t, x, u, η) connects two
equations DE0(L) and DE0(L̃) from class (7) then it has the form given by formulae (2) and
(17), where T ,X,U 1 and U 0 are arbitrary smooth functions of their arguments such that
TtXxU

1 �= 0 and additionally U 0/U 1 is a solution of the equation L. The arbitrary elements
are transformed by formulae (3), where L = ∂t − A∂xx − B∂x − C is the second-order linear
differential operator associated with the equation L.

Proof. The matrices formed by the coefficients of the second derivations in the equations
DE0(L) and DE0(L̃) are singular. That is why we cannot use the results of [36] on
admissible transformations in classes of parabolic equations having positively defined matrices
of the coefficients of the second derivations. All determining equations have to be obtained
independently.
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We use the direct method. Consider a point transformation T from the equation DE0(L)

to the equation DE0(L̃) of the general form [t̃ , x̃, ũ, η̃] = [T ,X,U,H ](t, x, u, η) with the
nonvanishing Jacobian. Sometimes we will also assume that the old variables (t, x, u, η) are
functions of the new variables (t̃ , x̃, ũ, η̃) and do a simultaneous split with respect to both
the old and new variables. This trick is correct under certain conditions. We introduce the
notations Q := Dx + ηDu, Q̃ := Dx̃ + η̃Dũ and F := Q̃η̃. In the old variables, the function
F is expressed via t, x, u, η, ηt , ηx and ηu, and moreover (Fηt

, Fηx
, Fηu

) �= (0, 0, 0). (Indeed,
the condition Fηt

= Fηx
= Fηu

= 0 means that the function F depends only on (t, x, t, η) in
the old variables and, therefore, is a function of only (t̃ , x̃, ũ, η̃) in the new variables. Then
we could split the equation F = η̃x̃ + η̃η̃ũ defining F with respect to the derivatives of η̃ and
obtain the contradiction 0 = 1.)

The equation DE0(L̃) can be written in the form Q̃F = · · ·, where the right-hand side
contains derivatives only up to order 1. We return to the old variables in DE0(L̃) and confine
it to the manifold of the equation DE0(L), expressing the derivative ηxx from DE0(L) and
substituting the found expression into DE0(L̃). Then we split the obtained equation DE′

0
step-by-step with respect to different subsets of the other derivatives of η (or η̃ alternatively).
To optimize this procedure, we start from the subsets of derivatives giving the simplest
determining equations and take into account found equations for the further split. Note that
the expression Q̃F has the representation Q̃F = (Q̃t)DtF + (Q̃x)DxF + (Q̃u)DuF .

After collecting the coefficients of ηtt , ηtx and ηtu in DE′
0, we derive the system

(Q̃t)Fηt
= 0, (Q̃t)Fηx

+ (Q̃x)Fηt
= 0, (Q̃t)Fηu

+ (Q̃u)Fηt
= 0

which implies the equation Q̃t = 0 since
(
Fηt

, Fηx
, Fηu

) �= (0, 0, 0). We expand the expression
Q̃t , assuming t a function of (t̃ , x̃, ũ, η̃): Q̃t = tx̃ + tη̃η̃x̃ + η̃(tũ + tη̃η̃ũ). The split of the
equation Q̃t = 0 with respect to the new jet variables η̃x̃ and η̃ũ results in the equations
tη̃ = 0 and tx̃ + η̃tũ = 0. Then the subsequent split with respect to the new variable η̃ gives
the equations tx̃ = 0 and tũ = 0. Therefore, t is a function of only t̃ , i.e., t̃ depends only
on t, t̃ = T (t). Under this condition, the function F expressed in the old variables does not
depend on ηt , i.e., Fηt

= 0 and hence
(
Fηx

, Fηu

) �= (0, 0).
Collecting the coefficients of ηuu and ηxu in DE′

0 gives the system

(Q̃u)Fηu
− η2(Q̃x)Fηx

= 0, (Q̃x)Fηu
+ (Q̃u)Fηx

− 2η(Q̃x)Fηx
= 0.

Since
(
Fηx

, Fηu

) �= (0, 0), the determinant of the matrix of this system considered as a system
of linear algebraic equations with respect to

(
Fηx

, Fηu

)
has to vanish, i.e., (Q̃u − ηQ̃x)2 = 0

that implies Q̃u = ηQ̃x. Assuming x and u the functions of (t̃ , x̃, ũ, η̃), we expand the
expressions Q̃x and Q̃u similarly to Q̃t and split the equation Q̃u = ηQ̃x with respect to the
new jet variables η̃x̃ and η̃ũ. This results to the equations uη̃ = ηxη̃ and ux̃ + η̃uũ = η(xx̃ +η̃xũ).
Alternating the old and new variables in any derived equation gives a correct equation.
Therefore, we also have the equations Uη = HXη,Ux + ηUu = H(Xx + ηXu).

The next term for collecting coefficients in DE′
0 is ηt . The equation obtained by this split

is presented as AG = Ã(Q̃x)Fηx
, where G denotes the coefficient of ηt in η̃t̃ . Under the

above-stated conditions, the expressions appearing in this equation take the form

F = 1

�

(
D(H,U)

D(x, u)
+ H

D(X,H)

D(x, u)

)
, G = 1

Tt�

∂(H,X,U)

∂(η, x, u)
, Q̃x = Uu − HXu

�
.

Hereafter � = D(X,U)/D(x, u)(�= 0), and

∂(Z1, . . . , Zk)

∂(z1, . . . , zk)
and

D(Z1, . . . , Zk)

D(z1, . . . , zk)

denote the usual and total Jacobians of the functions Z1, . . . , Zk with respect to the variables
z1, . . . , zk , respectively. Note that in the case of a single dependent variable each total Jacobian
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is, at most, a first-order polynomial in the derivatives of this dependent variable. Removing
the denominators from the equations AG = Ã(Q̃x)Fηx

results in the equation

A�2 ∂(H,X,U)

∂(η, x, u)
= Ã(Uu − HXu)

[
�

(
∂(H,U)

∂(η, u)
+ H

∂(X,H)

∂(η, u)

)

− ∂(X,U)

∂(η, u)

(
D(H,U)

D(x, u)
+ H

D(X,H)

D(x, u)

)]
the right-hand side of which is at most a first-order polynomial in ηx and ηu. In view of
nonvanishing A and ∂(H,X,U)/∂(η, x, u), this implies that the coefficients of ηx and ηu in �

equal zero, i.e., ∂(X,U)/∂(η, u) = 0 and ∂(X,U)/∂(x, η) = 0. Then ∂(X,U)/∂(x, u) �= 0
since otherwise the transformation T is singular. Hence Xη = Uη = 0.

Collecting the coefficients of η2
x in DE′

0 leads to the equation Hηη(Uu − HXx)
2 = 0.

Note that Uu − HXx = (Q̃x)� �= 0 since � �= 0 and Q̃x �= 0. (Via the split with respect
to unconstrained tilde variables, vanishing Q̃x implies the condition xx̃ = xũ = xη̃ = 0
which contradict the nonsingularity of the inverse of T .) Therefore, Hηη = 0, i.e.,
H = H 1(t, x, u)η + H 0(t, x, u), where H 1 = Hη �= 0. Knowing the explicit dependence
of H on η allows us to additionally split all equations with respect to η. Thus, splitting the
equation Ux + ηUu = H(Xx + ηXu) gives the condition Xu = 0 (hence XxUu �= 0) and, then,
the conditions H 1 = Uu/Xx and H 0 = Ux/Xx . The equation DE′

0 contains only a single
term including η2ηu. Equating the corresponding coefficient to zero, we derive the condition
Uuu = 0.

The whole set of the above found conditions on T ,X,U and H implies that the form of the
transformation T is described by formulae (2) and (17). Then the operator Q is transformed
in a simple way: Q̃ = X−1

x Q. This gives us the idea to rewrite the equations DE0(L) and
DE0(L̃) in terms of the operators Q and Q̃, respectively. Thus, the equation DE0(L) has the
form

ηt + ηu(AQη + Bη + Cu) = AQ2η + (Ax + B)Qη + (Bx + C)η + Cxu.

All derivatives of η containing the differentiation with respect to x are excluded from DE′
0 by

the substitution ηx = Qu − ηηu, and hence DE′
0 can be split with respect to Q2η, ηu,Qη, η

and u. Collecting the coefficients of the terms ηuQη, ηuη, ηuu and ηu, we obtain formulae (3)
for transformations of the arbitrary elements A,B and C and the condition L(U 1/U 0) = 0.

�

Note 11. We do not split under deriving determining equations in the proof of lemma 8 as
much as possibly since the resulting system would be too cumbersome and, moreover, the
proof of theorem 5 implies that in fact this complete system is reduced to the set of conditions
presented in lemma 8.

Theorem 5. There exists a canonical one-to-one correspondence between the sets of
admissible transformations of classes (1) and (7). Namely, each point transformation between
equations L and L̃ from class (1) is extended to a point transformation between the associated
equations DE0(L) and DE0(L̃) according to formula (17). In both the transformations the
variables (t, x, u) and the arbitrary elements are transformed in the same way. The extended
transformations exhaust the sets of admissible transformation in class (7).

Proof. The extension of each admissible transformation in class (1) by formula (17) gives an
admissible transformation in class (7). Therefore, it is enough to check that every admissible
transformation in class (7) coincides with the extension of an admissible transformation in
class (1). We take two equations from class (6) which are connected via a point transformation.
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They necessarily are determining equations for reduction operators with the zero coefficients
of ∂t and the unit coefficients of ∂x for some equations L and L̃ from class (1). Therefore,
these equations can be denoted by DE0(L) and DE0(L̃), respectively. Consider a point
transformation T̆ mapping DE0(L) to DE0(L̃). In view of lemma 8, the transformation T̆
has the form given by formulae (2) and (17) and, therefore, is projectable on the space of
the variables (t, x, u). Denote its projection by T . The pairs (DE0(L), DE0(L̃)) and (L, L̃)

have the same tuples of arbitrary elements transformed by the same formulae (3). That is
why lemmas 4 and 8 imply that T is a point transformation from L to L̃. It is clear that the
transformation T̆ is the extension of T by formula (17), i.e., T̆ = T0. �

Corollary 11. The equivalence group G∼
0 of class (7) is isomorphic to the equivalence group

G∼ of class (1). The canonical isomorphism is established by the extension of transformations
from G∼

0 to the variable η via formula (17), where U 0 = 0.

Corollary 12. For any equation L from class (1), the maximal point symmetry groups
(resp. the maximal Lie invariance algebras) of the equations L and DE0(L) are isomorphic.
The canonical isomorphism between the algebras is realized via the extension of each Lie
symmetry operator Q = τ∂t + ξ∂x + (ζ 1u + ζ 0)∂u of L to the Lie symmetry operator
Q1 = Q +

(
(ζ 1 − ξx)η + ζ 1

x u + ζ 0
x

)
∂η of DE0(L).

In view of corollaries 11 and 12, the results on the group classification of class (7) follow
from theorem 1.

Corollary 13. The kernel Lie algebra of class (7) is 〈I0〉, where I0 = u∂u + η∂η. Any equation
from class (7) is invariant with respect to the operators of the form Z0(f ) = f ∂u +fx∂η, where
the parameter-function f = f (t, x) runs through the solution set of the associated equation
ft = Afxx + Bfx + Cf . All possible G∼

0 -inequivalent cases of extension of the maximal Lie
invariance algebra are exhausted by the following equations of the reduced form (9) (the
values of V are given together with the corresponding maximal Lie invariance algebras):

(1) V = V (x): 〈∂t , I0, Z0(f )〉;
(2) V = µx−2, µ �= 0: 〈∂t ,D0,�0, I0, Z0(f )〉;
(3) V = 0: 〈∂t , ∂x,G0,D0,�0, I0, Z0(f )〉
Here,

D0 = 2t∂t + x∂x − η∂η,

�0 = 4t2∂t + 4tx∂x − (x2 + 2t)u∂u − (xη + 6tη + 2xu)∂η,

G0 = 2t∂x − xu∂u − (xη + u)∂η.

8. Lie reductions of determining equations

Suppose that an equation L from class (1) admits a Lie symmetry operator Q = τ∂t +ξ∂x +ζ∂u.
The coefficients of Q necessarily satisfy the conditions τx = τu = 0, ξu = 0 and ζuu = 0, i.e.,
τ = τ(t), ξ = ξ(t, x) and ζ = ζ 1(t, x)u + ζ 0(t, x), and ζ 0 is a solution of L.

In view of corollaries 9 and 12, the determining equations DE1(L) and DE0(L),
respectively, possess the Lie symmetry operators Q1 and Q0 associated with Q, which can be
applied to reduce the determining equations and construct their exact solutions. The found
solutions of the determining equations give the reduction operators of a special kind for the
initial equation L, implicitly connected with Lie invariance properties of L. The question is
what properties the solutions of L, invariant with respect to such reduction operators, possess,
e.g., whether these solutions necessarily are Lie invariant or they are not.
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An admissible transformation T of the equation L in class (1) has form (2) and maps
the pair (L,Q) to a pair (L′,Q′), where the equation L′ also belongs to class (1) and Q′

is a nontrivial (resp. trivial) Lie symmetry operator of L′ if Q is a nontrivial (resp. trivial)
Lie symmetry operator of L. Up to the equivalence generated by the set of all admissible
transformations of class (1) (see lemma 4) in the set of pairs (equation of form (1), its Lie
symmetry operator), we can assume that Q ∈ {∂t , ∂x} or Q ∈ {u∂u, ∂u} if Q is a nontrivial or
trivial Lie symmetry operator of L, respectively. Q ∼ ∂t if τ �= 0 and Q ∼ ∂x if τ = 0 and
ξ �= 0.

If Q ∈ {∂t , ∂x}, the Lie symmetry operator Q1 of the system DE1(L) and the Lie symmetry
operator Q0 of the equation DE0(L), which are associated with the operator Q, formally have
the same form as the operator Q but are defined in different spaces of variables.

Proposition 1. Suppose that an equation L from class (1) possesses a Lie symmetry operator
Q = τ∂t + ξ∂x + ζ∂u, where necessarily τ = τ(t), ξ = ξ(t, x) and ζ = ζ 1(t, x)u + ζ 0(t, x)

and additionally τ �= 0. Let Q1 be the associated Lie symmetry operator of the system DE1(L),
a solution (g1, g2, g3) of DE1(L) be Q1-invariant and R = ∂t + g1∂x + (g2u + g3)∂u ∈ Q1(L)

be the corresponding reduction operator. Then the functions g1, g2 and g3 are expressed,
according to formulae (11), via a solution (v1, v2, v3) of the uncoupled system 3L, which is
invariant with respect to the Lie symmetry operator

τ∂t + ξ∂x + ζ 1v1∂v1 + ζ 1v2∂v2 + (ζ 1v3 + ζ 0)∂v3 + λiqv
q∂vi

of this system for some constants λiq, i = 1, 2, 3, q = 1, 2. Here the functions v1 and v2 have
to be linearly independent. Each R-invariant solution of L is a linear combination, with the
unit coefficient of v3, of the components of the Lie invariant solution (v1, v2, v3) of the system
3L.

Proof. It is sufficient to consider only the reduced form of Lie symmetry operators, which
is Q = ∂t in the case τ �= 0. Then Q1 = ∂t . The equation L is Lie invariant with
respect to the operator ∂t if and only if At = Bt = Ct = 0. Consider an operator
R = ∂t + g1∂x + (g2u + g3)∂u ∈ Q1(L), where the coefficient tuple (g1, g2, g3) is a Q1-
invariant solution of DE1(L), i.e., it additionally satisfies the condition g1

t = g2
t = g3

t = 0.
An Ansatz constructed with the operator R has the form u = f 1(x)ϕ(ω) + f 0(x), where
f 1 = f 1(x) �= 0 and f 0 = f 0(x) are given coefficients, ϕ = ϕ(ω) is the new unknown
function, ω = t + �(x) is the invariant-independent variable and �x �= 0. This Ansatz
reduces L to a (in general, inhomogeneous) linear second-order constant-coefficient ordinary
differential equation in ϕ, which we denote by L′. The general solution of L′ is represented in
the form ϕ = cpϕp(ω) + ϕ3(ω), where ϕ3 is a particular solution of L′, ϕ1 and ϕ2 are linearly
independent solutions of the corresponding homogeneous equation and c1 and c2 are arbitrary
constants. Let us recall that p, q = 1, 2. Substituting the general solution ofL′ into the Ansatz,
we obtain the two-parametric family of solutions of L, having form (10) with vp = f ϕp and
v3 = f ϕ3 + g. Due to L′ is a constant-coefficient equation, the functions vi admit the
representation vp = ψpq(t)θq(x) and v3 = ψ3q(t)θq(x) + θ3(x), where ψ

iq
t = λipψpq for

some constants λip depending on the coefficients of L′. Therefore, (v1, v2, v3) is a solution of
the system 3L, which is invariant with respect to the Lie symmetry operator ∂t + λiqv

q∂vi of
this system. �

Proposition 2. Suppose that the system DE1(L) associated with an equation L from class (1)
possesses a Lie invariance operator Q1 with the vanishing coefficient of ∂t and a nonvanishing
coefficient of ∂x . Let a solution (g1, g2, g3) of DE1(L) be invariant with respect to Q1. Then
the associated reduction operator ∂t + g1∂x + (g2u + g3)∂u of the equation L is necessarily
equivalent to a Lie invariance operator of L.
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Proof. Consider the case Q = ∂x . The equation L possesses the Lie symmetry operator ∂x if
and only if Ax = Bx = Cx = 0. Then the equivalence transformation t̃ = T (t), x̃ = x + ϕ(t)

and ũ = ψ(t)u, where Tt = A, ϕt = B,ψt = Cψ and ψ �= 0, maps Q to ∂x̃ and reduces L
to the linear heat equation ũt̃ = ũx̃x̃ associated with the values Ã = 1 and B̃ = C̃ = 0. That
is why without loss of generality we can assume that A = 1 and B = C = 0. An Ansatz
constructed for the system DE1(L) by the operator Q1 = ∂x is gi = gi(t) and the corresponding
reduced system has the form gi

t = 0, i.e., gi = const. The operator ∂t + g1∂x + (g2u + g3)∂u

with constant coefficients belongs to the maximal Lie invariance algebra of the equation L
which coincides under our suppositions with the linear heat equation. The obtained statement
is reformulated for the general form of Q with the vanishing coefficient of ∂t . �

Results on Lie solutions of the determining equation DE0(L) can be presented as a single
statement without split into different cases depending on the structure of the corresponding
Lie symmetry operators. To formulate them in a compact form, we need to introduce at first
the auxiliary notion of one-parametric solution families of the equation L, associated with
the Lie symmetry operator Q of L. The set of such families is partitioned into two subsets
which are, respectively, formed by the singular associated families consisting of Q-invariant
solutions of L and the regular associated families obtained via acting on fixed non-Q-invariant
solutions of L by the one-parametric transformation group generated by Q.

Let us recall that Q0 denotes the Lie symmetry operator of DE0(L), associated with Q.
Equivalent families of solutions, which differ only by parameterization, are identified. In
particular, regular one-parametric families associated with the same operator are equivalent
if and only if they differ only by parameter shifts. Such families are obtained by the action
of the same one-parametric transformation group on fixed solutions which are similar with
respect to this group. A neighborhood of a nonsingular point of Q is considered. (Otherwise,
the one-to-one correspondence in the following theorem may be broken. In some cases it can
saved by taking into account discrete symmetry transformations, see note 14 of [29].)

Formulae (17) and (18) imply the following statement which will be used below.

Proposition 3. Let an equation L from class (1) be invariant with respect to a point
transformation T (resp. an operator Q) and the function η = η(t, x, u) be a solution of
the associated determining equation DE0(L). Then the equations ux = η(t, x, u) admit
the transformation T (resp. the operator Q) as a point symmetry transformation (resp. a
Lie symmetry operator) if and only if the function η is an invariant of the associated point
symmetry transformation T0 (resp. the associated Lie symmetry operator Q0) of the equation
DE0(L).

Theorem 6. For each equation L from class (1) and each Lie symmetry operator Q of L,
there exists a one-to-one correspondence between Q0-invariant solutions of the determining
equation DE0(L) and one-parametric families of solutions of L, associated with Q. Namely,
the reduction of the equation L by an operator ∂x + η∂u, where the coefficient η is a Q0-
invariant solution of DE0(L), gives a one-parametric solution family of L, associated with Q.
And vice versa, each family of the above kind consists of solutions invariant with respect to an
operator ∂x + η∂u, where the coefficient η is a Q0-invariant solution of DE0(L).

Proof. Suppose that an equation L from class (1) admits a Lie symmetry operator Q. We
denote the one-parametric transformation group with the infinitesimal operator Q by G. Let
a solution η of the equation DE0(L) be invariant with respect to the associated operator Q0.
Then the system Lη of the equation L with the additional constraint ux = η possesses Q as a
Lie symmetry operator. The general solution F of Lη is a one-parametric solution family of
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L. There are two different cases of the structure of F . In the first case the family F consists of
Q-invariant solutions of L and, therefore, is a singular one-parametric solution family
associated with the operator Q. In the second case the familyF contains a solution u = u0(t, x)

of L, which is not Q-invariant. A one-parametric family of solutions of Lη obtained via acting
on the solution u0 by transformations from G is equivalent to F . Therefore, F is a regular
one-parametric solution family associated with the operator Q.

Vice versa, if a one-parametric solution family of the equation L is associated with the
operator Q then the corresponding additional constraint ux = η with a solution η of DE0(L)

admits Q as a Lie symmetry operator. In view of proposition 3, this implies that the function
η is Q-invariant. �

Since the determining equation DE0(L) has three independent variables, it also admits
Lie reductions with respect to two-dimensional subalgebras of its maximal Lie invariance
algebras to ordinary differential equations and, therefore, possesses the corresponding invariant
solutions. To formulate the statement on such solutions analogously to theorem 6, we need
to define one-parametric families of solutions of the equation L, associated with the two-
dimensional Lie invariance algebra g of L. The whole set of associated families is also
partitioned into the subsets of the singular and regular families. Each singular associated
family consists of g-invariant solutions of L. Each regular associated family is obtained
via acting on fixed Q1-invariant and non-Q2-invariant solution of L by the one-parametric
transformation group generated by Q2. Here, Q1 and Q2 are arbitrary linearly independent
elements of g.

Theorem 7. Suppose that a two-dimensional Lie invariance algebra g of an equation L from
class (1) induces the Lie invariance algebra g0 of the corresponding determining equation
DE0(L), which is appropriate for the Lie reduction of DE0(L). Then there exists a one-to-
one correspondence between g0-invariant solutions of DE0(L) and one-parametric families
of solutions of L, associated with g. Namely, the reduction of L by an operator ∂x + η∂u,
where the coefficient η is a g0-invariant solution of DE0(L), gives a one-parametric family of
solutions of L, associated with g. And vice versa, each family of this kind consists of solutions
invariant with respect to an operator ∂x +η∂u, where the coefficient η is a g0-invariant solution
of DE0(L).

Proof. We denote by G the two-parametric transformation group with the Lie algebra g and
locally parameterize elements of G in a neighborhood of the identical transformation by the
pair (ε1, ε2): g(ε1, ε2) ∈ G. In particular, g(0, 0) is the identical transformation and the
infinitesimal operators Qi = gεi

(0, 0), i = 1, 2, form a basis of the algebra g. Let a solution η

of the equation DE0(L) be invariant with respect to the associated algebra g0. Then g is a Lie
invariance algebra of the system Lη formed by the equation L and the additional constraint
ux = η. The general solution F of Lη is a one-parametric solution family of L. We explicitly
represent this family by the formula u = f (t, x, �). There are two different cases of its
possible structure. The family F can consist of g-invariant solutions of L and, therefore, be a
singular one-parametric solution family associated with the algebra g. The other possibility is
that the family F contains a solution u = f (t, x, �0) of L, which is not g-invariant. Then the
solution u = f (t, x, �0) is invariant with respect to the operator �0,1Q

2 − �0,2Q
1 ∈ g, where

�0,i = (g(ε1, ε2)�0)εi
|(ε1,ε2)=(0,0). The action of the one-parametric subgroup G′ of G with the

infinitesimal operator �0,1Q
1 + �0,2Q

2 ∈ g is (locally) transitive on F . It means that F is a
regular one-parametric solution family associated with the algebra g, which is obtained via
acting by G′ on the fixed solution u = f (t, x, �0).
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Conversely, if a one-parametric solution family of the equation L is associated with the
algebra g then the corresponding additional constraint ux = η, where η = η(t, x, u) is a
solution of DE0(L), admits g as a Lie symmetry algebra. In view of proposition 3, this implies
that the function η is g-invariant. �

9. Particular cases of reductions and linearization

In this section we consider a few examples of typical additional conditions to the determining
equations, which are different from Lie ones. A special attention is paid to an interpretation of
the confinement of the linearizing transformations given in corollaries 5 and 7 to the particular
cases under consideration. Presented examples also show that nontrivial reduction operators
associated with nontrivial additional conditions to determining equations can finally lead to
trivial solutions of equations from class (1).

We fix an equation L from class (1). The extension of possibilities for constraints of the
determining equations in comparison with the initial equation L is connected with a greater
number of unknown functions in DE1(L) and the additional independent variable u in DE0(L).

Consider at first reduction operators of L with the vanishing coefficients of ∂t .

Example 2. Suppose that Q0 = ∂x is a reduction operator of DE0(L). It means that the
arbitrary elements satisfy the condition Ax = Bxx = Cx = 0. The problem is to investigate
the solutions of DE0(L), which are invariant with respect to Q0. We do an equivalence
transformation of the form t̃ = T (t), x̃ = X1(t)x + X0(t), ũ = U 1(t)u, where the arbitrary
elements A,B and C and the function η are transformed according to formulae (3) and (17).
The parameter-functions T ,X1, X0 and U 1 can be chosen in such a way that Ã = 1, B̃ = 0
and C̃ = 0. In the new variables the operator Q0 equals X1∂x̃ and hence is equivalent to
∂x̃ . This is why we can assume without loss of generality that A = 1, B = 0 and C = 0,
i.e., L coincides with the linear heat equation. Then Q0 = ∂x is a Lie symmetry operator
of DE0(L). The corresponding reduced equation ηt = ηηuu for the function η = η(t, u)

is equivalent, on the subset of nonvanishing solutions, to the remarkable nonlinear diffusion
equation ζt = (ζ−2ζu)u, where ζ = 1/η. It is well known that this diffusion equation is
linearized to the linear heat equation [3, 39]. We derive this transformation via confining the
transformation of DE0(L) to, formally, L, presented in corollary 7. We put � = �(t, u) − x,
where �u �= 0. Then η = −�x/�u = 1/�u, i.e., ζ = �u. After integrating, we obtain
the equation �t = �uu/�u

2 + β(t) in the function � = �(t, u). The ‘integration constant’
β = β(t) can be assumed to vanish due to the ambiguity in the connection between ζ and �.
The confinement of transformation (14) is the hodograph transformation

the new independent variables: t̃ = t, x̃ = �,

the new dependent variable: ũ = u

since here the variable x has to be replaced by � = x + �. The application of this
transformation results in the linear heat equation ũt̃ = ũx̃x̃ . Note that the above interpretation
of the confinement of transformation (14) differs from the interpretation in the proof of theorem
9 of [29].

Example 3. Let the function η satisfies the additional condition ηuu = 0, i.e., η =
η1(t, x)u + η0(t, x). Then the equation DE0(L) is reduced to the system

η1
t = (

Aη1
x + A(η1)2 + Bη1 + C

)
x
,

η0
t = A

(
η0

xx + 2η0η1
x

)
+ Ax

(
η0

x + η0η1
)

+ (Bη0)x + Cη0.
(22)
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Putting � = �1(t, x)u + �0(t, x), we rewrite the transformation described in corollary 7
in terms of η1 and η0. The condition η = −�x/�u implies that η1 = −�1

x

/
�1 and

η0 = −�0
x

/
�1. The hodograph transformation (14) is equivalent to expressing u from the

formula for �:

u = � − �0

�1
= �1(t, x)� + �0(t, x),

where �1 = 1/�1 and �0 = �0/�1. Since the expression for u has to be the solution family
of L with the parameter � = �,�1 and �0 are solutions of L, �1 �= 0. Finally, we derive the
representation

η1 = �1
x

�1
, η0 = �0

x − �1
x

�1
�0, (23)

where �1 and �0 are solutions of the initial equation L. In other words, transformation
(23) reduces the nonlinear system (22) in η1 and η0 to the system of two uncoupled copies
of L. The expression for η1 in (23) coincides, up to sign, with the well-known Cole–Hopf
substitution linearizing the Burgers equation. (If A = 1 and B = C = 0, the first equation
of (22) coincides, up to signs, with the Burgers equation.) The expression for η1 in (23) is
obtained as the Darboux transformation of the solution �0, associated with the solution �1.
It follows from (23) that the reduction operator R = ∂x + (η1u + η0)∂u is G∞(L)-equivalent
to the operator ∂x + η1u∂u. Indeed, the transformation t̃ = t, x̃ = x, ũ = u − �0 belongs to
G∞(L) and maps the operator R to the operator R̃ = ∂x̃ + η1ũ∂ũ.

An Ansatz constructed with R has the form u = �1(t, x)ϕ(ω)+�0(t, x), where ϕ = ϕ(ω)

is an invariant unknown function of the invariant-independent variable ω = t . The associated
reduced equation is ϕω = 0, i.e., ϕ = const. Therefore, u = �1� + �0 is the family of
R-invariant solutions of L.

Vice versa, the solution family u = �1(t, x)� + �0(t, x) of the equation L is necessarily
invariant with respect to the reduction operator ∂x + (η1(t, x)u + η0(t, x))∂u, where the
coefficients η1 and η0 are determined by formulae (23).

As a result, we obtain the following statement.

Proposition 4. For any equation of form (1), there exists a one-to-one correspondence between
one-parametric families of its solutions, linearly depending on parameters, and reduction
operators of the form ∂x + η(t, x, u)∂u, where ηuu = 0. Namely, each operator of such kind
corresponds to the family of solutions which are invariant with respect to this operator.

Example 4. At first sight, the additional condition ηx +ηηu = 0 seems much more complicated
than the conditions studied in the previous examples. In fact, it leads only to solutions of the
initial equation L, which are first-order polynomials with respect to x. To see this, we carry
out the transformation described in corollary 7 and, as a result, obtain the condition ũx̃x̃ = 0.
In contrast to the solutions of L, the associated solutions of DE0(L) have a complex structure
and are difficult to construct.

The system S consisting of the equations DE0(L) and ηx + ηηu = 0 has the compatibility
condition (Bxx + 2Cx)η + Cxxu = 0. Before considering the possible cases, we note that the
equation ηx + ηηu = 0 is invariant with respect to the transformations from the equivalence
group G∼

0 of class (7), which additionally satisfy the conditions
(
U 1

x

/
(U 1)2

)
x

= 0 and
(Xx/(U

1)2)x = 0. Denote the subgroup of G∼
0 , consisting of these transformations, by Ğ∼

0 .
The solutions of the system S are constructed up to Ğ∼

0 -equivalence.
If Bxx + 2Cx �= 0, the function η has the form η = η1(t, x)u. Then η1 = 0 and Cx = 0

up to Ğ∼
0 -equivalence. The interpretation of this solution is obvious. An associated Ansatz
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for L and the corresponding reduced equation are u = ϕ(ω), where ω = t and ϕω = 0. The
family of the associated invariant solutions of L is formed by the constant functions.

The condition Bxx + 2Cx = 0 implies Cxx = 0. Up to Ğ∼
0 -equivalence we can assume

that B = C = 0. Then the system S is reduced to the system ηt = 0, ηx + ηηu = 0. Its
nonzero solutions are implicitly determined by the formula u = xη + w(η), where w = w(η)

is an arbitrary smooth function of η. An associated Ansatz for the equation L is found from
the condition u = xux + w(ux) which is the Clairaut’s equation with the implicit parameter
t. We choose the Ansatz u = ϕ(ω)x + w(ϕ(ω)), where ω = t . The corresponding reduced
equation is ϕω = 0, i.e., the associated invariant solutions of L has the form u = cx + w(c),
where c is an arbitrary constant.

Let us emphasize that the obtained results have a compact form only due to the
consideration up to Ğ∼

0 -equivalence.

Now we present a single example concerning the system DE1(L). In view of corollary 6
we can assume without loss of generality that g3 = 0 and, therefore, consider only the first
two equations of the system DE1(L). The G∼

1 -invariance of the equation g3 = 0 additionally
justifies this assumption.

Example 5. The constraint g2 = 0 is invariant with respect to the transformations from the
equivalence group G∼

1 , in which U 1 = 1. These transformations are presented by formulae
(2), (3) and (15), where U 1 = 1 and U 0 = 0, and form the subgroup of G∼

1 , denoted by
Ğ∼

1 . Up to the Ğ∼
1 -equivalence, the coefficient A can be assumed equal to 1. Imposing the

conditions g2 = g3 = 0 and A = 1, we reduce DE1(L) to the system

g1
t − g1

xx + 2g1g1
x + (Bg1)x + Bt = 0, (24)

Ct + g1Cx + 2g1
xC = 0. (25)

Equation (24) is linearized to the equation wt = wxx + (Bw)x by the generalization
g1 = −wx/w − B of the Cole–Hopf substitution and then to the equation vt = vxx + Bvx

by the subsequent substitution w = vx . In the case C = 0, the resulting substitution
g1 = −vxx/vx − B is the confinement of transformation (11) under the assumptions
v3 = 0, v2 = 1 and v1 = v, where v is a nonconstant solution of L.

Equation (25) admits a double interpretation depending on a reading of the phrase ‘the
equation L possesses the reduction operator ∂t + g1∂x’. It can be considered either as an
additional constraint for the function g1 or an equation in the coefficient C. Choosing the
second alternative, we obtain C = v2

x�(v) for some function � = �(v).
If C = 0, equation (25) is an identity. Therefore, the equation L admits any reduction

operators of the form ∂t −(vxx/vx +B)∂x , where v = v(t, x) runs through the set of nonconstant
solutions of L. The corresponding two-parametric solution family of L is u = c1v(t, x) + c2.

Note 12. Since we do not initially specify values of the arbitrary elements and derive
conditions on arbitrary elements depending on possessed reduction operators, the above
examples have features of inverse problems of group analysis. Namely, we simultaneously
describe both reduction operators with certain properties and values of arbitrary elements
for which the corresponding equations admit such reduction operators. A similar inverse
problem for generalized conditional symmetries of evolution equations is investigated in [38].
Due to possibilities on the variation of arbitrary elements and application of equivalence
transformations, the problems of this kind essentially differ from the problem of finding
reduction operators of a fixed equation.
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10. Applications

In sections 6–8 ‘no-go’ statements of different kinds have been proved for the reduction
operators of the equations from class (1). The term ‘no-go’ has to be treated only as the
impossibility of exhaustive solving of the problem or the inefficiency of finding Lie symmetries
and Lie reductions of the determining equations. At the same time, imposing additional (non-
Lie) constraints on coefficients of reduction operators, one can construct particular examples
of reduction operators and then apply them to the construction of exact solutions of an initial
equation. Since the determining equations have more dependent or independent variables and,
therefore, more degrees of freedom than the initial ones, it is more convenient often to guess a
simple solution or a simple Ansatz for the determining equations, which can give a parametric
set of complicated solutions of the initial equations. (A similar situation is for Lie symmetries
of first-order ordinary differential equations.) It is the approach that was used, e.g., in [10]
to construct exact solutions of a (nonlinear) fast diffusion equation with reduction operators
having the zero coefficients of ∂t . Earlier this approach was applied to the interesting subclass
of class (1), consisting of the linear transfer equations of the general form

ut = uxx +
h(t)

x
ux. (26)

These equations arise, in particular, under symmetry reduction of the Navier–Stokes equations
[5, 22, 23]. The investigation of reduction operators allowed us to construct a series of
multi-parametric solutions of equations (26) and, as a result, wide solution families of the
Navier–Stokes equations, parameterized by constants and functions of t.

We consider class (26) as an example showing possible ways of imposing nontrivial
additional constraints to determining equations. This subclass is singled out from the whole
class (1) by the conditions on arbitrary elements A = 1, (xB)x = 0 and C = 0.

We fix an equation L from class (26). The maximal Lie invariance algebra of L is the
algebra

(1) 〈u∂u, f ∂u〉 if h �= const;
(2) 〈∂t ,D,�h, u∂u, f ∂u〉 if h = const, h �∈ {0, 2};
(3) 〈∂t ,D,�h, 2∂x − hx−1u∂u,Gh, u∂u, f ∂u〉 if h ∈ {0, 2}.
Here, D = 2t∂t +x∂x , �h = 4t2∂t +4tx∂x − (x2 +2(1+h)t)u∂u,Gh = 2t∂x − (x +htx−1)u∂u.
The function f = f (t, x) runs through the set of solutions of L. The case h = 2 is reduced
to the linear heat equation (h = 0) by the transformation t̃ = t, x̃ = x and ũ = xu,
cf theorem 1. The intersection of the maximal Lie invariance algebras of equations from
class (26) coincides with 〈u∂u, ∂u〉, i.e., the kernel Lie symmetry group of class (26) consists
of scalings and translations of u. It is easy to see that the equation L possesses no nontrivial
Lie symmetries and, therefore, no Lie reductions if h �= const. At the same time, non-Lie
reduction operators can be found for an arbitrary value of h.

Any reduction operator of L with the nonzero coefficient of ∂t is G∞(L)-equivalent to an
operator ∂t +g1∂x +g2u∂u, where the functions g1 = g1(t, x) and g2 = g2(t, x) satisfy the first
two equations of the corresponding determining system DE1(L). Following example 5, we
impose the additional constraint g2 = 0. Then the second equation of DE1(L) is identically
satisfied. The first equation of DE1(L) is rewritten in the form

(g1 + hx−1)t = (
g1

x − g1(g1 + hx−1)
)
x
.

We put the left- and right-hand sides equal to 0. Then g1 = χ(x) − hx−1 and
g1

x − g1(g1 + hx−1) = ψ(t). The compatibility of these equations implies that χ = −x−1 and
ψ = 0, i.e., g1 = −(h(t) + 1)x−1, and the corresponding reduction operator is

Q = ∂t − (h(t) + 1)x−1∂x.
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As a result, the equation L possesses the family of Q-invariant solutions

u = c2

(
x2 + 2

∫
(h(t) + 1) dt

)
+ c1. (27)

Each reduction operator of L with the zero coefficient of ∂t is equivalent to an operator
∂x +η∂u, where the coefficient η = η(t, x, u) satisfies the corresponding determining equation
DE0(L):

ηt = ηxx + 2ηηxu + η2ηuu + h(x−1η)x. (28)

Suppose that the same operator ∂x + η∂u is a reduction operator of all equations from class
(26), i.e., the function η is a solution of (28) for any value of h. This demand leads to the
additional constraint (x−1η)x = 0 implying that η = xζ(t, u). We substitute the expression
for η into (28) and split with respect to x. Integrating the obtained system ζuu = 0, ζt = 2ζ ζu,
we construct all its solutions:

ζ = − u + µ

2(t + �)
or ζ = ν,

where µ, � and ν are arbitrary constants. In other words, the common reduction operators
of equations from class (26) are exhausted, up to equivalence with respect to the kernel Lie
symmetry group (more precisely, up to translations of u), by the operators of the form

G� = (2t + �)∂x − xu∂u and ∂x + ν∂u.

(It is obvious that there are no common reduction operators with nonzero coefficients of ∂t .)
The constant � cannot be put equal to 0 similarly to the constant µ since translations of t
do not belong to the kernel Lie symmetry group of class (26) and the classification up to the
equivalence group of class (26) is not convenient for the consideration. The operator G� is
represented as the linear combination G + �∂x of the Galilean operator G = 2t∂x − xu∂u

and translational operator ∂x . The non-reduced form for the coefficient of ∂x in G� is chosen
to obtain this representation. For any equation L from class (26), the reduction operator
R = ∂x +ν∂u is G∞(L)-equivalent to the operator ∂x which is trivial since the arbitrary element
C equals 0 in class (26). Another formulation of the above result is the following: each equation
from class (26) is conditionally invariant with respect to arbitrary linear combinations of the
Galilean operator G and the translational operator ∂x . The family of G�-invariant solutions of
an equation of form (26) consists of the functions

u = c1 exp

{
− x2

2(2t + �)
−

∫
h(t) + 1

2t + �
dt

}
.

The corresponding family for the operator ∂x + ν∂u has form (27) with c2 = ν.
The constructed exact solutions are generalized to a series of similar solutions:

u =
N∑

k=0

T k(t)x2k, u =
N∑

k=0

Sk(t)
( x

2t + �

)2k

exp

{
− x2

2(2t + �)
−

∫
h(t) + 1

2t + �
dt

}
.

The functions T k = T k(t) and Sk = Sk(t), respectively, satisfy the systems of ODEs

T k
t = 2(k + 1)(h(t) + 2k + 1)T k+1, k = 0, N − 1, T N

t = 0,

Sk
t = 2(k + 1)(h(t) + 2k + 1)(2t + �)−2Sk+1, k = 0, N − 1, SN

t = 0,

which are easily integrated. These series of exact solutions can also be found using different
techniques connected with reduction operators and their generalizations, in particular, via
nonlocal transformations in class (26), associated with reduction operators [5, 22].
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11. Discussion

The main result of the present paper is the chain of ‘no-go’ statements on reduction operators
of linear (1 + 1)-dimensional parabolic equations. These statements show that the application
of conventional methods to solving the determining equations for coefficients of such operators
cannot lead to reduction operators giving new exact solutions of initial equations. In both cases
naturally arising under the consideration, the determining equations form well-determined
systems whose solving is in fact equivalent to solving of the corresponding equations from
class (1). All transformational and symmetry properties of the determining equations are
induced by the corresponding properties of the initial equations. Reduction operators
constructed via Lie reductions of the determining equations are also connected with Lie
invariance properties of the initial equations. Nevertheless, it is demonstrated in section 10
that the involvement of ingenious empiric approaches different from the Lie one can give
reduction operators which are useful for the construction of non-Lie exact solutions of
equations from class (1).

Techniques developed in this paper can be applied to the general class of (1 + 1)-
dimensional evolution equations. We also plan to consider generalized reduction operators of
linear (1 + 1)-dimensional parabolic equations, whose coefficients depend on the derivatives
of u. An interesting subject related to this is the connection between (generalized) reduction
operators and Darboux transformations. Here we give some hints on this connection.

Consider a fixed tuple of linearly independent functions (ψ1, . . . , ψp) of t and x, and
the linear independence is assumed over the ring of smooth functions of t. The Darboux
transformation constructed with the tuple (ψ1, . . . , ψp) is denoted by DT[ψ1, . . . , ψp] and
is defined by formula [16, 34]

ũ = DT[ψ1, . . . , ψp](u) = W(ψ1, . . . , ψp, u)

W(ψ1, . . . , ψp)
.

Here, W(ϕ1, . . . , ϕs) denote the Wronskian of the functions ϕ1, . . . , ϕs with respect to the
variable x, i.e., W(ϕ1, . . . , ϕs) = det(∂i−1ϕj/∂xi−1)si,j=1. The initial (u) and, therefore,
obtained (ũ) functions also depend on t and x.

The transformation DT[ψ1, . . . , ψp] is represented as the action of a linear p-order
differential operator with differentiations with respect to only x, DT[ψ1, . . . , ψp](u) =
DT[ψ1, . . . , ψp]u. The operator will be denoted by the same symbol as the transformation
and called the Darboux operator associated with the tuple (ψ1, . . . , ψp). In the cases p = 1
and p = 2, the expressions of the Darboux operators, respectively, are

DT[ψ1] = ∂x − ψx

ψ
, DT[ψ1, ψ2] = ∂xx − (W(ψ1, ψ2))x

W(ψ1, ψ2)
∂x +

W
(
ψ1

x , ψ2
x

)
W(ψ1, ψ2)

.

If the functions ψ1, . . . , ψp are linearly independent solutions of an equation L from
class (1), then they are linearly independent over the ring of smooth functions of t [31, 34].
The Darboux transformation DT[ψ1, . . . , ψp] maps the equation L to the equation L̃ also
belonging to class (1) and having the following values of arbitrary elements [16, 34]:

Ã = A, B̃ = B + pAx, C̃ = C + pBx +
p(p + 1)

2
Axx +

Wx

W
Ax + 2

(
Wx

W

)
x

A,

where the abbreviation W = W(ψ1, . . . , ψp) is used.
Suppose that a reduction operator Q of L has the canonical form and is associated with

a first-order linear differential operator Q̃ acting on the functions of t and x. It means that
either Q = ∂t + g1∂x + g2u∂u if Q ∈ Q1(L) or Q = ∂x + η1u∂u if Q ∈ Q0(L). (Here, g1, g2
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and η1 are the functions of t and x.) In the first case the operator Q̃ = −∂t − g1∂x + g2

equals the operator −A DT[v1, v2] on the solution set of the equation L, where the solutions
vi = vi(t, x), i = 1, 2, of L are determined according to corollary 5. In the second case the
coefficient η1 admits the representation η1 = �x/�, where � = �(t, x) is a solution of L.
Therefore, Q̃ = −DT[�]. Finally, we have the following statement.

Proposition 5. Let a reduction operator Q of an equation L from class (1) be associated, up
to the equivalence relations of operators, with a first-order linear differential operator acting
on the functions of t and x. Then it is equivalent to a Darboux operator constructed with
one (resp. two) linearly independent solution of this equation in the case of vanishing (resp.
nonvanishing) coefficient of ∂t .

The properties of single reduction operators of multi-dimensional equations essentially
differ from that in the (1 + 1)-dimensional case. For example, all single reduction operators
of (1 + n)-dimensional linear heat equations are exhaustively classified in [33] for arbitrary n
without addressing the general solution of this equation that annuls the possibility of ‘no-go’
statements. At the same time, it is not the case for involutive families of reduction operators
[24, 40].
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